Purification and expression of a processing protease on β-alanine-oxoglutarate aminotransferase from rat liver mitochondria

Tomoko Ohyama^{a,*}, Koichi Matsuda^a, Hideyuki Tachibana^a, Shigeko Fujimoto Sakata^a, Masataka Mori^b, Masahisa Horiuchi^c, Nanaya Tamaki^a

^aFaculty of Nutrition and High Technology Research Center, Kobe-Gakuin University, Arise 518, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan ^bDepartment of Molecular Genetics, Kumamoto University School of Medicine, Kumamoto, Japan ^cLaboratory for Neuroanatomy, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan

Received 3 May 2004; revised 10 July 2004; accepted 19 July 2004

Available online 28 July 2004

Edited by Judit Ovádi

Abstract GABA[arrow beta]AlaAT convertase is an endopeptidase that processes brain-type 4-aminobutyrate aminotransferase (GABA AT; EC 2.6.1.19) to liver-type β-alanine-oxoglutarate aminotransferase (\beta-AlaAT I) in rats. Its molecular mass was 180 kDa as determined by gel filtration. A subunit molecular mass of 97 652 Da was measured using MALDI-TOF MS. The N-terminal sequence of the purified GABA[arrow beta]AlaAT convertase was SRVEVSKVLILGSGGLSIGQAGEFDYSGS-QAV- and was identical to residues 418-449 of carbamoylphosphate synthetase I (CPS I; EC 1.2.1.27) purified from rat liver. The subunit molecular mass and the N-terminal amino acid sequence suggested that GABA[arrow beta]AlaAT convertase was the 418-1305 peptide of CPS I. An expression vector containing the coding region of the 418-1305 peptide of rat CPS I was transfected into NIH3T3 cells and the extract of the cells showed GABA[arrow beta]AlaAT convertase activity. © 2004 Published by Elsevier B.V. on behalf of the Federation of **European Biochemical Societies.**

Keywords: 4-Aminobutyrate aminotransferase; 4-Aminobutyrate; Mitochondrial processing peptidase;

β-Alanine aminotransferase; β-Alanine; Carbamoyl-phosphate synthetase

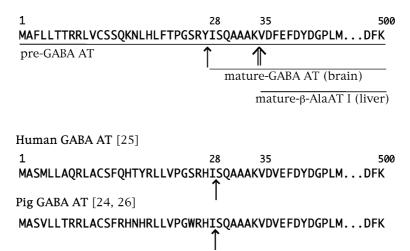
1. Introduction

β-Alanine-oxoglutarate aminotransferase (β-AlaAT I) catalyzes the transamination of β -alanine, which is mainly formed in liver cytosol by the reductive degradation of uracil via dihydrouracil and N-carbamoyl-β-alanine [1–3], and transported into mitochondria [4]: where β-alanine is further metabolized to malonate semialdehyde by β-AlaAT I or D-3-aminoisobutyrate-pyruvate aminotransferase (β-AlaAT II; EC 2.6.1.40) in the mitochondrial matrix [4,5].

Abbreviations: GABA, 4-aminobutyrate; β-AlaAT I, β-alanine-oxoglutarate aminotransferase; GABA AT, GABA aminotransferase; β-AlaAT II, (R)-3-amino-2-methylpropionate-pyruvate aminotransferase $[(R)-\beta$ -aminoisobutyrate-pyruvate aminotransferase]; pre-GABA AT, precursor of GABA AT; CPS I, carbamoyl-phosphate synthetase I; PMSF, phenylmethylsulfonylfluoride; PCR, polymerase

β-AlaAT I purified from rat liver also catalyzes the transamination of 4-aminobutyrate (GABA) [6] and L-β-aminoisobutyrate [7] in addition to β -alanine, while β -AlaAT II is not active for GABA [8]. It is well known that GABA is a major inhibitory transmitter in many invertebrate systems and also in the vertebrate central nervous system. Enzyme activity of β-AlaAT I is mainly distributed in the mitochondrial matrix of the brain [9], liver [4], and kidney [5] in rats. The immunological and kinetic properties show that β-AlaAT I from rat liver closely resembles those of GABA aminotransferase (GABA AT) from the rat brain [6]. Rat liver β-AlaAT I mRNA and rat brain GABA AT mRNA are transcripts from the same gene [10]. However, the N-terminal amino acid of rat liver β-AlaAT I is Val [6], while that of rat brain GABA AT has been identified as IIe [11] by the dansyl method. The amino acid sequence predicted from rat liver cDNA suggests that the precursor to β-AlaAT I (pre-GABA AT) consists of a liver-type mature enzyme of 466 amino acid residues, with 34 residues attributed to the leader peptide. The mature form of GABA AT from the brain has an ISQAAAK-peptide additional to the N-terminus sequence of liver-type mature-β-AlaAT I [10] (Scheme 1).

The liver-type mature enzyme and the brain-type mature enzyme were named mature-β-AlaAT I and mature-GABA AT, respectively. Brain-type GABA AT is cleaved to liver-type β-AlaAT I protein when incubated with fresh mitochondrial extract from rat liver [10]. These results suggest the existence of an enzyme, which converts the brain-type mature-GABA AT to the liver-type mature-β-AlaAT I. This paper describes the purification of the enzyme GABA[arrow beta]AlaAT convertase from rat liver mitochondria.


2. Materials and Methods

2.1. Materials

All reagents were of analytical grade and were purchased from Nacalai Tesque (Kyoto, Japan). DEAE-Sepharose CL-6B and Sephacryl S-200 were obtained from Amersham Biosciences (Uppsala, Sweden). Hydroxyapatite was obtained from the Seikagaku Corporation (Tokyo, Japan) Cibacron blue F3G-A-Sepharose 4B was prepared by binding Cibacron blue F3G-A to Sepharose 4B according to Rinderknecht et al. [12] and was used to remove adenine nucleotide specific binding proteins. The Escherichia coli strain TOP 10, pSE420 expression vector and the polymerase chain reaction (PCR) primers were obtained from Invitrogen Corp. (CA, USA). Restriction enzymes

^{*}Corresponding author. Fax: +81-78974-5842. E-mail address: f9blh801@nutr.kobegakuin.ac.jp (T. Ohyama).

Rat GABA AT (β-AlaAT I)

Scheme 1. Processing of rat liver β -AlaAT I. Alignment of the N-terminal amino acid sequence of GABA AT from rats. Single arrow (\uparrow) indicates the putative processing site cleaved by mitochondrial processing peptidase. Double arrow (\uparrow) indicates the processing site of rat liver GABA[arrow beta]AlaAT convertase.

were the products of New England Biolabs Inc. (MA, USA). A QuickChange site-directed mutagenesis kit was obtained from STRATAGENE (CA, USA), TransFast™ Transfection Reagent and pCI-neo expression vector were obtained from Promega Corp. (WI, USA). NIH3T3 cells were obtained from Riken (Tsukuba, Japan). The molecular mass markers for SDS−PAGE were a product of Invitrogen Corp. (CA, USA).

2.2. Preparation of mitochondrial extract

Fresh livers (40 g) from male Wistar ST strain rats were homogenized using Potter-Elvejem homogenizer in 10 vol. (w/v) of 0.25 M sucrose in respect to the original liver mass. The homogenate was centrifuged for 10 min at 500×g. The supernatant was centrifuged again for 10 min at 8000×g to obtain pellets of mitochondria. The mitochondria were suspended in a minimum volume of 0.25 M sucrose. They were then put in a tube with a prepared sucrose density gradient from 1.15 to 1.24 g/ml and centrifuged for 180 min at $82\,000\times g$. After centrifugation, the mitochondrial fractions were recovered and resuspended in 0.25 M sucrose containing 10 mM potassium phosphate, pH 7.5, 1 mM EDTA, and 2 mM 2-mercaptoethanol. The mitochondrial suspension was sonicated with MicrosonTM, Model XL2000 (Misonix Incorporated, New York, USA). The sonicated suspension was centrifuged for 15 min at $10\,000 \times g$. The supernatant was used as the mitochondrial extract.

2.3. Preparation of mature-GABA AT from rat brain

Mature-GABA AT from rat brain was purified according to the methods previously described [6].

2.4. Assay of GABA[arrow beta]AlaAT convertase activity

GABA[arrow beta]AlaAT convertase activity was determined by measuring the rate of conversion from mature-GABA AT to the mature- β -AlaAT I liver form. The standard reaction mixture contained 0.3 μg of purified mature-GABA AT, 10 mM potassium phosphate, pH 7.0, containing 0.5 mM EDTA and 2 mM 2-mercaptoethanol in a final volume of 12 μl . The incubation was carried out for 3 h at 25 °C. The reaction was terminated with the addition of 2% SDS, then analyzed using SDS-PAGE (7.5% gel). The immunoblot analysis was conducted by the method of Towbin et al. [13]. Rabbit polyclonal antibody against rat liver β -AlaAT I has been previously prepared [6]. The densities of bands corresponding to mature-GABA AT and mature- β -AlaAT I were determined using an image analyzer (Fujifilm FLA-2000, Tokyo, Japan). One unit of enzyme activity was defined as the amount that produced a 50% conversion of mature-GABA AT to mature- β -AlaAT I under the standard assay conditions. The enzyme

activity was proportional with reaction time until about 90% of the product was formed.

2.5. Purification procedure of GABA[arrow beta]AlaAT convertase

All subsequent steps were performed at approximately 4 °C. Purification was started from the mitochondrial extract from 40 g of rat liver. The precipitate obtained at 50% ammonium sulfate saturation was dissolved in a minimum volume of buffer A (10 mM potassium phosphate, pH 7.5, containing 0.5 mM EDTA, 2 mM 2-mercaptoethanol, and 0.1 mM phenylmethylsulfonylfluoride (PMSF)) and desalted via dialysis against buffer A overnight at 4 °C. After centrifugation, the supernatant was applied to a DEAE-Sepharose CL-6B column (2.0×16 cm, flow rate 24 ml/h) equilibrated with buffer A containing 10% (v/v) glycerol. The column was washed with about 120 ml of buffer A and eluted with buffer A containing 100 mM KC1, followed by 100-350 mM linear gradient KC1 in buffer A. The active fractions were concentrated using a Centricon Plus 20 (Amicon Corp. MA, USA). The enzyme preparation was applied to a Cibacron blue F3G-A-Sepharose 4B column (1.5×8.5 cm, flow rate 12 ml/h) equilibrated with buffer B (10 mM potassium phosphate, pH 7.0, containing 0.5 mM EDTA, 2 mM 2-mercaptothanol, 0.1 mM PMSF, and 10% (v/ v) glycerol). GABA[arrow beta]AlaAT convertase passed through the column with buffer B. The eluate was applied to a hydroxyapatite column (1.0×6.4 cm, flow rate 6 ml/h) equilibrated with buffer B, followed by buffer B-buffer C (100 mM potassium phosphate, pH 7.0, containing 0.5 mM EDTA, 2 mM 2-mercaptoethanol, 0.1 mM PMSF, and 10% (v/v) glycerol) linear gradient. The active fraction was concentrated to about 1.0 ml using Centricon Plus 20. The enzyme was applied to a Sephacryl S-200 column (1.5×60 cm, flow rate 10 ml/h) equilibrated with buffer C. The active fraction was concentrated to about 1.0 ml, then stored at 4 °C.

2.6. Inhibition of GABA[arrow beta]AlaAT convertase activity by an antiserum against carbamoyl-phosphate synthetase I

Rabbit polyclonal antibody against rat liver carbamoyl-phosphate synthetase I (CPS I) was prepared previously [14,15]. The proteins of the rabbit serum were precipitated with 50% (NH₄)₂SO₄ and dialyzed in 10 mM potassium phosphate, pH 7.0. The solution was diluted with the above buffer and was used as anti-CPS I.

GABA[arrow beta]AlaAT convertase (0.5 µg) was incubated with anti-CPS I [14,15] for 1 h at 25 °C. GABA AT was added to the above reaction mixture and incubated for 3 h at 25 °C.

The processing reaction was stopped by the addition of 2% SDS. Immunoblot analysis was performed using SDS-PAGE with rabbit β -AlaAT I antibody and the inhibition of GABA[arrow beta]AlaAT convertase activity was analyzed.

2.7. Expression of GABA[arrow beta]AlaAT convertase in mammalian cells

GABA[arrow beta]AlaAT convertase (the peptide of CPS I 418-1305) cDNA was amplified using the PCR method with the forward primer 5'-AAGAAÂTTCATGTCTCGAGTCGAGGTTTCCAA-3' and the reverse primer 5'-AAGAATTCTTACTTAATGGCAA-CATAGTCAGAG-3' containing EcoR I sites, respectively. The PCRgenerated fragment GABA[arrow beta]AlaAT convertase cDNA was then cloned into the EcoR I site of pCI-neo for the mammalian cell expression vector (pCI-neo-convertase). The constructs were transfected into NIH3T3 cells using TransFast™ Transfection Reagent following the manufacturer's protocol. NIH3T3 cells were harvested 48 h after transfection using centrifugation for 2 min at $300 \times g$. The precipitate was suspended with 200 µl of 10 mM potassium phosphate, pH 7.0, containing 0.5 mM EDTA, 2 mM 2-mercaptoethanol, 0.1 mM PMSF and 10% glycerol. After sonication, the suspension was centrifuged for 20 min at $15\,000\times g$. The supernatant was used for the assay of GABA[arrow beta]AlaAT convertase activity. The pCI-neo expression vector was transfected to NIH3T3 cells as a control.

2.8. Expression of the pre- and mature-GABA ATs in E. coli

The coding region of GABA AT cDNA was amplified using the PCR method with the forward primer 5'-TAGCGGCCGCA-TGGCCTTCTTGTTGACTAC-3' and the reverse primer 5'-GAC-TCGAGTTACTTGAAGTCTGCTAAGA-3' containing NcoI and XhoI sites, respectively. The PCR generated fragment was then cloned into the NcoI and XhoI sites of pSE420. The resulting plasmid pSE420pre-GABA AT contained the nucleotides that contributed to a 500 amino acid residue. E. coli TOP 10 strain was transformed with the ligation mixture. pSE420-pre-GABA AT clones were selected in the ampicillin-resistant transformants. The construction of pSE420-mature-GABA AT was performed using a QuickChange site-directed mutagenesis kit following the manufacturer's protocol. E. coli transformed with pSE420-pre-GABA AT or pSE420-mature-GABA AT were cultured for 48 h at 29 ° C, then harvested using centrifugation for 5 min at $800 \times g$ [16,17]. The precipitate was washed with 10 mM potassium phosphate, pH 7.5, containing 1.0 mM EDTA, 2 mM 2mercaptoethanol, and 50 µM pyridoxal phosphate, then harvested for 5 min at $800 \times g$. After sonication of the harvested cells, the suspension was centrifuged for 20 min at $10\,000 \times g$. The supernatant containing the recombinant pre-GABA AT and mature-GABA AT was used as a substrate of GABA[arrow beta]AlaAT convertase.

2.9. Determination of molecular masses

The subunit molecular mass of purified GABA[arrow beta]AlaAT convertase was determined by Sephacryl S-200 chromatography with thyroglobulin (670 kDa), gammaglobulin (158 kDa), ovalbumin (44 kDa) and myoglobin (17 kDa)as the markers. The molecular masses of the GABA[arrow beta]AlaAT convertase, mature-GABA AT and mature-β-AlaAT I were determined with MALDI-TOF MS, Voyager DE-STR (Boston, MA, USA).

3. Results

3.1. Purification of GABA[arrow beta]AlaAT convertase

The purification steps and the specific activity were shown in Table 1. GABA[arrow beta]AlaAT convertase could be separated from mature-β-AlaAT I, which is basally expressed in liver, by DEAE–Sepharose chromatography. Therefore, we

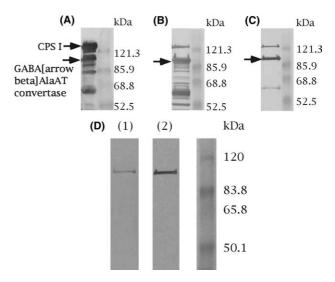


Fig. 1. Gel electrophoresis of purified GABA[arrow beta]AlaAT Convertase. The enzyme of each purification step was analyzed by polyacrylamide gel electrophoresis in the presence of 0.1% SDS and immunoblot analysis was performed with rabbit CPS I antibody. A Bench Mark™ Prestained Protein Ladder(Invitrogen) was used as the molecular mass markers. (A) The mitochondrial extract (total protein 120 μg). (B) After DEAE–sepharose CL-6B chromatography (total protein 100 μg). (C) After hydroxyapatite chromatography (total protein 2 μg). (D) The purified enzyme (total protein 0.5 μg after Sephacryl S-200 chromatography): (1) the gel was stained with Coomassie brilliant blue R-250; (2) the gel was immunoblotted and analyzed with CPS I antibody.

could estimate GABA[arrow beta]AlaAT convertase activity after the DEAE–Sepharose chromatography step.

In gel electrophoresis, a GABA[arrow beta]AlaAT convertase band stained with CPS I antibody was found in the rat liver mitochondrial extract (Fig. 1A) and purified to a single band (Fig. 1D-2). The purified GABA[arrow beta]AlaAT convertase showed a single band stained with Coomassie brilliant blue R-250 (Fig. 1D-1).

By comparing it with the reference proteins, the molecular mass of the purified enzyme by Sephacryl S-200 was calculated to be 180 kDa. The subunit molecular mass of the purified GABA[arrow beta]AlaAT convertase was 97 kDa (Fig. 1). The molecular mass of the purified enzyme determined by MAL-DI-TOF MS was 97 652 Da. These findings suggest that purified GABA[arrow beta]AlaAT convertase from rat liver is organized as a dimer.

3.2. N-terminal amino acid sequence and identification with a segment of CPS I

The N-terminal sequence of the purified GABA[arrow beta]AlaAT convertase determined by dansyl Edman method

Table 1 Purification of GABA[arrow beta]AlaAT convertase from rat liver

Steps	Total protein (mg)	Total activity (U)	Specific activity (U/mg)	Purification (-fold)	Yield (%)
DEAE–Sepharose chromatography	13.69	53.4	3.9	1.0	100
Cibacron blue chromatography	1.87	21.8	11.7	3.0	41
Hydroxyapatite chromatography	0.20	5.3	26.0	6.7	9.9
Sephacryl S-200 chromatography	0.05	4.6	92.0	23.6	8.6

One unit of processing activity is defined as the amount of enzyme that cleaves 50% of mature-GABA AT to mature- β -AlaAT I under the assay condition described in Section 2.

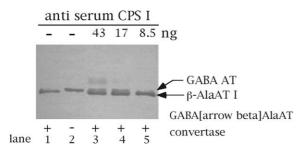


Fig. 2. Inhibition of GABA[arrow beta]AlaAT convertase activity by an antibody against CPSI GABA[arrow beta]AlaAT convertase was preincubated with buffer or anti CPS I serum. After the incubation, GABA[arrow beta]AlaAT convertase activity was assayed with 0.3 μg of purified GABA AT as substrate.

was SRVEVSKVLILGSGGLSIGQAGEFDYSGSQAV- and was the same as the amino acid sequence at positions 418–449 from rat CPS I [18]. When the purified GABA[arrow beta]A-laAT convertase was incubated with the antiserum against rat liver CPS I, GABA[arrow beta]AlaAT convertase activity was inhibited with an antiserum dose dependency (Fig. 2). The purified CPS I (30 μg) did not show any sign of GABA[arrow beta]AlaAT convertase activity under the standard assay conditions.

After incubation of the purified rat brain mature-GABA AT with GABA[arrow beta]AlaAT convertase (Fig. 2, lane 1), the product molecular mass was 52 960 Da by MALDI-TOF MS, which was the same as that of rat liver β-AlaAT I [10].

3.3. Expression of recombinant GABA[arrow beta]AlaAT convertase

In order to estimate whether the recombinant peptide is responsible for the GABA[arrow beta]AlaAT convertase activity, an expression vector containing the coding region of the 418–1305 peptide fragment of rat CPS 1 was constructed and transfected into NIH3T3 cells. Fig. 3A shows that the recombinant peptide was detected in NIH3T3 cells transfected with pCI-neo-convertase vector, but not empty pCI-neo vector. The recombinant protein revealed the GABA[arrow beta]AlaAT convertase activity (Fig. 3B, lanes 2, 3). The extract

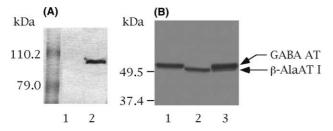


Fig. 3. GABA[arrow beta]AlaAT convertase activity of the recombinant CPS I418–1305. (A) Immunoblot analysis of recombinant GABA[arrow beta]AlaAT convertase with CPS I antibody. Lane 1, 50 μg protein of crude extract of NIH3T3 cells which were transfected with the pCI-neo vectors; lane 2, 50 μg protein of crude extract of NIH3T3 cells which were transfected with the pCI-neo-convertase. (B) GABA[arrow beta]AlaAT convertase activity. GABA[arrow beta]AlaAT convertase activity of each sample was assayed. Lane 1,50 μg protein of NIH3T3 cells transfected with the pCI-neo vector; lane 2, 50 μg protein of crude extract of NIH3T3 cells transfected with the pCI-neo-convertase; lane 3, 20 μg protein of crude extract of NIH3T3 cells transfected with the pCI-neo-convertase.

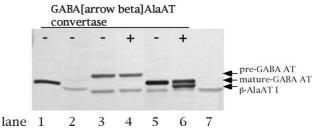


Fig. 4. Processing of GABA AT precursors. The extract from bacteria, which expressed pre-GABA AT or mature-GABA AT, was incubated in the presence or absence of 0.5 μg of purified GABA[arrow beta]AlaAT convertase under the standard assay conditions. Immunoblot analysis was performed with anti-rat β -AlaAT I rabbit serum. Lane 1, 10 μg protein of fresh extract from rat brain; lane 2, 10 μg protein of fresh extract from rat brain; lane 2, 10 μg protein of fresh extract from rat liver; lanes 3 and 4, 15 μg crude extract of pre-GABA AT; lanes 5 and 6, 15 μg crude extract of recombinant mature-GABA AT; lane 7, 30 μg crude extract of the *E. coli* strain TOP 10. The bands of low molecular mass in lanes 3–7 are non-specific bands, which are derived from the *E. coli* strain TOP 10.

from the control cells did not show any sign of enzyme activity (Fig. 3B, lane 1).

3.4. Processing of β-AlaAT I precursor by GABA[arrow beta]AlaAT convertase

The recombinant $\beta\text{-AlaAT}$ I precursors were utilized to confirm the processing properties of GABA[arrow beta]AlaAT convertase. The pre-GABA AT and mature-GABA AT at 1–500 and 28–500, respectively, in Scheme 1, were expressed in *E. coli*. The purified GABA[arrow beta]AlaAT convertase cleaves mature-GABA AT (Fig. 4, lane 6), but not the pre-GABA AT as a substrate (Fig. 4, lane 4). The band of $\beta\text{-AlaAT}$ I in Fig. 4, lane 6 was analyzed using Edman degradation. The N-terminal sequence was VDFEFDY-, which was the same as the N-terminal amino acid sequence of the liver-type mature- β -AlaAT I.

4. Discussion

We purified a new type of mature-\beta-AlaAT I converting endopeptidase, GABA[arrow beta]AlaAT convertase, from rat livers. Most mitochondrial proteins are translated on cytoplasmic ribosomes as larger precursors and are then imported into the organelle [19,20]. The presequences are recognized so as to direct the proteins to mitochondria, then cleaved and lost in the mitochondria [21,22]. The mitochondrial presequences were cleaved and classified as four cleavage site motifs as reported by Gakh et al. [23]: (i) XRX\\X(S/X) (R-2 motif); (ii) $XRX(Y/X) \downarrow (S/A/X)X$ (R-3 motif); (iii) $XRX \downarrow (F/L/I)XX(S/X)$ $T/G)XXXX\downarrow$ (R-10 motif); and (iv) $XX\downarrow X(S/X)$ (R-none motif). The amino acid sequence of the coding region of rat GABA AT (β-AlaAT I) contains 500 residues [13] similar to GABA AT from pig [24] and human [25]. Precursors of GABA AT from pig and human have the R-10 motif, but that of rat has the R-2 motif (Scheme 1). Therefore, the mature-GABA AT from pig [24,26] or human [25] was composed of the same 472 amino acid residues, while the mature one from rat [10] was 473. The N-terminal amino acids of β-AlaAT I from rat liver and GABA AT from rat brain are Val [6] and I1e [11], respectively. The N-terminal of rat mature-GABA AT may be further cleaved in the liver (Scheme 1). It was suggested that a new type of liver mature-β-AlaAT I converting endopeptidase,

GABA[arrow beta]AlaAT convertase, cleaves the heptapeptide at the N-terminal of the brain form of GABA AT [10]. The purified GABA[arrow beta]AlaAT convertase could not cleave the rat pre-GABA AT, which is expressed in *E. coli*, but was active for expressed rat mature-GABA AT. We confirmed the previous finding that the mature-β-AlaAT I is proteolytically cleaved in two steps [10]. The first cleavage of the R-2 motif is performed by a mitochondrial processing peptidase, yielding an intermediate sized protein which is the mature GABA AT. The second cleavage is carried out by a mitochondrial endopeptidase of GABA[arrow beta]AlaAT convertase.

The N-terminal amino acid sequences of GABA[arrow beta]AlaAT convertase were the same as positions 418–449 of rat liver CPS I. The subunit molecular mass of GABA[arrow beta]AlaAT convertase was 97 652 Da. The subunit molecular mass of rat liver CPS I is 160 kDa [18]. The precursor of CPS I consists of a 1500 amino acid residue with a 38-amino-termmal leader segment. Southern hybridization analysis of rat genomic DNA suggested that the CPS I gene is present in a single copy [18]. These findings suggest that CPS I may be cleaved between positions 417/418 and 1305/1306 (theoretical molecular mass 97 652 Da).

After the total RNA of rat liver was translated in a rabbit reticulocyte protein-synthesizing-system, the protein CPS I produced was detected as a single band by CPS I antibody [14,15]. Immunoblot analysis with anti-rat CPS I rabbit serum showed a single band with the same positive stain using Coomassie brilliant blue R-250 (Fig. 1D). These findings suggest that GABA[arrow beta]AlaAT convertase is composed of a 98 kDa protein cleaved from CPS I. The 98 kDa protein stained with anti-rat CPS I rabbit serum was found in the rat liver mitochondrial extract (Fig. 1A). The peptide CPS I 418–1305 expressed in NIH3T3 cells shows the GABA[arrow beta]AlaAT convertase activity (Fig. 3). It is well established that CPS I is not distributed in the brain. Therefore, liver-type β-AlaAT I cannot be detected in the brain (Fig. 4, lane 1).

The significance of the existence of GABA[arrow beta]A-laAT convertase is not well documented. Pyrimidine catabolizing enzymes of dihydropyrimidine dehydrogenase, dihydropyrimidinase and β -ureidopropionase are localized mainly in the liver, followed by the kidney in rats [10]. The affinity of β -alanine for β -AlaAT I is significantly higher than that for GABA AT in rats [10]. The β -alanine concentration is about 0.1 mM in the liver [27] and 0.01–0.04 mM in the brain [28,29], Therefore, liver-type mature- β -AlaAT I may be more favorable for β -alanine catabolism than brain-type mature-GABA AT at least.

GABA[arrow beta]AlaAT convertase derived from CPS I was clearly found in the rat liver mitochondrial extract and it is not formed during the course of the purification steps. CPS I in the rat liver has been estimated to make up 15–20% of the total mitochondrial protein [30]. It is well recognized that CPS I functions to convert ammonia, bicarbonate and ATP into carbamoyl phosphate, the initial step in the urea cycle. Native CPS I did not show the GABA[arrow beta]AlaAT convertase

activity. As shown in this paper, a fragment of CPS I had an unexpected proteolytic activity and processing activity function towards rat liver β -AlaAT I.

References

- [1] Fink, R.M., Fink, K. and Henderson, R.B. (1952) J. Biol. Chem. 201, 349–355.
- [2] Canellakis, E.S. (1956) J. Biol. Chem. 221, 315-322.
- [3] Fritzson, P. (1957) J. Biol. Chem. 226, 223-228.
- [4] Tamaki, N., Fujimoto, S., Mizota, C. and Kikugawa, M. (1987) J. Nutr. Sci. Vitaminol. 33, 439–449.
- [5] Mizota, C., Fujimoto, S., Kikugawa, M. and Tamaki, N. (1988) J. Nutr. Sci. Vitaminol. 34, 223–236.
- [6] Fujimoto, S., Mizutani, N., Mizota, C. and Tamaki, N. (1986) Biochim. Biophys. Acta 882, 106–112.
- [7] Tamaki, N., Fujimoto, S., Mizota, C. and Kikugawa, M. (1987) Biochim. Biophys. Acta 925, 238–240.
- [8] Tamaki, N., Kaneko, M., Mizota, C., Kikugawa, M. and Fujimoto, S. (1990) Eur. J. Biochem. 189, 39–45.
- [9] Schousboe, I., Bro, B. and Schousboe, A. (1977) Biochem. J. 162,
- [10] Kontani, Y., Sakata, S.F., Matsuda, K., Ohyama, T., Sano, K. and Tamaki, N. (1999) Eur. J. Biochem. 264, 218–222.
- [11] Maitre, M., Ciesielski, L., Cash, C. and Mandel, P. (1975) Eur. J. Biochem. 52, 157–169.
- [12] Rinnderknecht, H., Wilding, P. and Harverback, B.J. (1967) Experientia 23, 805.
- [13] Towbin, H., Staehelin, T. and Gordon, J. (1979) Proc. Natl. Acad. Sci. USA 76, 4350–4354.
- [14] Mori, M., Miura, S., Tatibana, M. and Cohen, P.P. (1979) Proc. Natl. Acad. Sci. USA 76, 5071–5075.
- [15] Kimura, T., Christoffels, M.V., Chowdhury, S., Iwase, K., Matsuzaki, H., Mori, M., Lamers, H.W., Darlington, J.G. and Takiguchi, M. (1998) J. Biol. Chem. 273, 27505–27510.
- [16] Sakamoto, T., Sakata, S.F., Matsuda, K., Horikawa, Y. and Tamaki, N. (2001) J. Nutr. Sci. Vitaminol. 47, 132–138.
- [17] Yokota, T., Fernandez-Salguero, P., Furuya, H., Lin, K., McBride, O.W., Podschun, B., Schnackerz, K.D. and Gonzalez, F.J. (1994) J. Biol. Chem. 269, 23192–23196.
- [18] Nyunoya, H., Broglie, K.E., Widgren, E.E. and Lusty, C.J. (1985) J. Biol. Chem. 260, 9346–9356.
- [19] Attardi, G. and Schatz, G. (1988) Annu. Rev. Cell Biol. 4, 289-
- [20] Hartl, F.-U., Pfanner, N., Nicholson, D.W. and Neupert, W. (1989) Biochim. Biophys. Acta 988, 1–45.
- [21] Pfanner, N. and Neupert, W. (1990) Annu. Rev. Biochem. 59, 331–353.
- [22] Neupert, W. (1997) Annu. Rev. Biochem. 66, 863-917.
- [23] Gakh, O., Cavadini, P. and Isaya, G. (2002) Biochim. Biophys. Acta 1592, 63–77.
- [24] De Biase, D., Maras, B., Bossa, F., Barra, D. and John, R.A. (1992) Eur. J. Biochem. 208, 351–357.
- [25] De Biase, D., Barra, D., Simmaco, M., John, R.A. and Bossa, F. (1995) Eur. J. Biochem. 227, 476–480.
- [26] Kwon, O.-S., Park, J. and Churchich, J.E. (1992) J. Biol. Chem. 267, 7215–7216.
- [27] Kubo, K., Funatsuka, A. and Tamaki, N. (1982) J. Nutr. Sci. Vitaminol. 28, 575–578.
- [28] Yoshino, Y., De Feudis, F.V. and Elliott, K.A.C. (1970) Can. J. Biochem. 48, 147–148.
- [29] Perry, T.L., Berry, K., Hansen, S., Diamond, S. and Mok, C. (1971) J. Neurochem. 18, 513–519.
- [30] Clark, S. (1976) J. Biol. Chem. 251, 950-961.